Energy

The conservation of energy

Gobble down five bananas and you'll have enough energy to swim for about an hour. That's because your body is a complex machine capable of turning one kind of energy (food) into another kind (movement). Cars can pull off the same trick. Depending on which make and model you own, you probably know that it does so many kilometres or miles to the gallon; in other words, using a certain amount of energy-rich gasoline, it can transport you (and a moderate load) a certain distance down the road. What we have here are two examples of machines—the human body and the auto-mobile—that obey one of the most important laws of physics: the conservation of energy. Written in its simplest form, it says that you can't create or destroy energy, but you can convert it from one form into another. Pretty much everything that happens in the universe obeys this fundamental law. But why, and what use is it anyway? Let's take a closer look!
     

Walk upstairs and you have more potential energy when you get to the top than you had at the bottom—but you haven't created energy out of thin air. The muscles in your body have to work against the force of gravity to move you upwards and your body loses energy (that it made from food) as it climbs. This is the energy that your body regains as potential energy.

What is the conservation of energy?

The first thing we need to note is that the law of conservation of energy is completely different from energy conservation. Energy conservation means saving energy through such things as insulating your home or using public transportation; generally it saves you money and helps the planet. The conservation of energy has nothing to do with saving energy: it's all about where energy comes from and where it goes.
Write the law formally and it sounds like this:
In a closed system, the amount of energy is fixed. You can't create any more energy inside the system or destroy any of the energy that's already in there. But you can convert the energy you have from one form to another (and sometimes back again).
A "closed system" is a bit like a sealed box around whatever we're studying: no energy can leak into the box from the inside (or be introduced to the box from outside).
There are some even simpler, more familiar ways of stating the conservation of energy. "No pain, no gain" is a rough everyday equivalent: if you want something, you have to work for it. "There's no such thing as a free lunch" and "You don't get anything for free" are other examples.

Examples of the conservation of energy

The conservation of energy (and the idea of a "closed system") sounds a bit abstract, but it becomes an awful lot clearer when we consider some real-life examples.

Driving a car

Fill a car up with gasoline and you have a closed system. All the energy you have at your disposal is locked inside the gas in your tank in chemical form. When the gas flows into your engine, it burns with oxygen in the air. The chemical energy in the gas is converted first into heat energy: the burning fuel makes hot expanding gas, which pushes the pistons in the engine cylinders. In this way, the heat is converted into mechanical energy. The pistons turn the crankshaft,gears, and driveshaft and—eventually—the car's wheels. As the wheels turn, they speed the vehicle along the road, giving it kinetic energy (energy of movement).
                                                                     
Car engines, like this V12 Jaguar engine, obey the conservation of energy. They convert the energy in fuel into heat, sound, and mechanical energy that moves you down the road.
If a car were 100 percent efficient, all the chemical energy originally locked inside the gasoline would be converted into kinetic energy. Unfortunately, energy is wasted at each stage of this process. Some is lost to friction when metal parts rub and wear against one another and heat up; some energy is lost as sound(cars can be quite noisy—and sound is energy that has to come from somewhere) Not all the energy the car produces moves you down the road: quite a lot has to push against the air (so it's lost to air resistance or drag), while some will be used to power things like the headlights, air conditioning, and so on. Nevertheless, if you measure the energy you start with (in the gasoline) and calculate how much energy you finish with and lose on the way (everything from useful kinetic energy and useless energy lost to friction, sound, air resistance, and so on), you'll find the energy account always balances: the energy you start with is the energy you finish with.
Now this only applies if your car is a "closed system." If you're driving along the straight and the road suddenly starts going downhill, you're going to be able to go much further than you'd be able to go otherwise. Does this violate the conservation of energy? No, because we're no longer dealing with a closed system. Your car is gaining kinetic energy from the gasoline in its tank, but it's also gaining kinetic energy because it's going downhill. This isn't a closed system so the conservation of energy doesn't apply any-more.

Boiling a kettle
An electric kettle like this converts electrical energy into heat energy. That's the reverse of the process that happens in the power plant that supplies your home, where electricity is produced using heat energy released by burning a fuel such as coal, oil, or gas.

Boil water with an electric kettle and you're seeing the conservation of energy at work again. Electrical energy drawn from the power outlet on your wall flows into the heating element in the base of your kettle. As the current flows through the element, the element rapidly heats up, so the electrical energy is converted into heat energy that gets passed to the cold water surrounding it. After a couple of minutes, the water boils and (if the power stays on) starts to turn to steam. How does the conservation of energy apply here? Most of the electrical energy that enters the kettle is converted into heat energy in the water, though some is used to provide latent heat of evaporation (the heat we need to give to liquids to turn them into gases such as steam). If you add up the total electrical energy "lost" by the electricity supply and the total energy gained by the water, you should find they're almost exactly the same. Why aren't they exactly equal? Simply because we don't have a closed system here. Some of the original energy is converted to sound and wasted (kettles can be quite noisy). Kettles also give off some heat to their surroundings—so that's also wasted energy.


Comments

Popular posts from this blog

SHAPER MACHINE: TYPES, PARTS, WORKING

TYPES OF WELDING JOINTS